Directionally Euclidean structures of Banach spaces
نویسندگان
چکیده
منابع مشابه
Stable Banach Spaces and Banach Space Structures, I: Fundamentals
We study model theoretical stability for Banach spaces and structures based on Banach spaces, e.g., Banach lattices or C∗-algebras. We prove that a theory is stable if and only if the following condition is true in every model E of the theory: If (ām ) and (b̄n) are bounded sequences in Ek and El (respectively) and R : Ek × El → R is definable, then there exist subsequences (āmi ) and (b̄n j ) su...
متن کاملBanach Spaces Determined by Their Uniform Structures
Following results of Bourgain and Gorelik we show that the spaces lp, 1 < p < ∞, as well as some related spaces have the following uniqueness property: If X is a Banach space uniformly homeomorphic to one of these spaces then it is linearly isomorphic to the same space. We also prove that if a C(K) space is uniformly homeomorphic to c0, then it is isomorphic to c0. We show also that there are B...
متن کاملBanach Spaces
(A revised and expanded version of these notes are now published by Springer.) 1 Banach Spaces Definition A normed vector space X is a vector space over R or C with a function called the norm. 1. The set of real numbers with the norm taken to be the absolute value.
متن کاملBanach Spaces
Paul Garrett [email protected] http://www.math.umn.edu/ g̃arrett/ [This document is http://www.math.umn.edu/ ̃garrett/m/fun/notes 2012-13/05 banach.pdf] 1. Basic definitions 2. Riesz’ Lemma 3. Counter-example: non-existence of norm-minimizing element 4. Normed spaces of continuous linear maps 5. Dual spaces of normed spaces 6. Banach-Steinhaus/uniform-boundedness theorem 7. Open mapping theore...
متن کاملBanach Spaces and Hilbert Spaces
A sequence {vj} is said to be Cauchy if for each > 0, there exists a natural number N such that ‖vj−vk‖ < for all j, k ≥ N . Every convergent sequence is Cauchy, but there are many examples of normed linear spaces V for which there exists non-convergent Cauchy sequences. One such example is the set of rational numbers Q. The sequence (1.4, 1.41, 1.414, . . . ) converges to √ 2 which is not a ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2011
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm202-2-5